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Abstract

Four complexes are prepared and characterized having molecular formula [ZK{d@k),, [Cu(dab}](NO3),-H,O, [Ni(dab)]-
(NOs)2-2H,0 and [Mn(dab)](NOs),, where dab: 1,4-diaminobutane. Thermolyses of these complexes were investigated by simultane-
ous thermogravimetry (TG), derivatives thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning calorimetry
(DSC). The kinetics of the thermolysis at early stages is investigated using isothermal TG by applying model-fitting and isoconversional
method. Thermolytic process is slow in inertjMnd is fast in air atmosphere due to oxidative nature. To investigate the response of these
complexes under the condition of rapid heating, ignition dely bas been measured. Thermal stability of the complexes was found to
increase in the order MN<Cu<Ni<Zn.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction such as HS, CO, NG, NHs, etc.[12-15] Nano sized metal
oxides formed in situ during thermolysis may be better sub-
Keen interest has recently been devoted to thermolysis of stitute for this application in place of aged one. The energetic
studies of transition metal complexes in solid state containing metal complexes are insensitive to impact up to 110 cm with
monodentate and bidentae ligafitis6]. 1,4-Diaminobutane 2 kg weight[16,17] and have been proved to be potential
acts as bidentate neutral ligand. This compound when com-ballistic modifiers for composite solid propellafis8—25]
plexed with metal ions having N§J ion as counter anionex-  During the combustion of propellants, these complexes pro-
hibits highly energetic properties because it undergoes highly duce highly reactive metal oxides which catalyse the burning
exothermic decomposition due to the presence of both reduc-rate of the propellant better than the oxide which are aged.
ing and oxidizing groug7,8]. The nature of explosivity of  Also, the exothermic decomposition of these complexes is
such compounds is reported to lie between primary and sec-supportive for burning rate enhancement and enhancement
ondary explosive$9,10]. These transition metal complexes of surface temperature.
undergo exothermic decomposition to give ultra fine metal  Recently, we have undertaken studies on the ther-
oxides which may have interesting electrical, magnetic and molysis and kinetics of some hexammine metal per-
catalytic propertie§l1]. Some semiconducting oxides such chlorates [23,11] bis(ethylenediamine) metal nitrates
as CuO, MnO, ZnO, etc. are used in the preparation of envi- [26] and bis(diethylenetriamine) metal nitraf@7] and
ronmental sensors for the detection of trace level pollutants bis(propylenediamine) metal nitraf&@6] complexes. Hex-
amine metal perchloratg22,23] and bis(ethylenediamine)
- metal nitrates have been found to be potential additives for
fax:i‘;rlre;gf;gfg4";gt_h°r' Tel.: +91 551 2200745 (R)/2202856 (0); composite solid propellants. In continuation of these inves-
E-mail addressgsingh4us@yahoo.com (G. Singh). tigations, we are reporting here the preparation, characteri-
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zation and thermal decomposition of bis(1,4-diaminobutane)
metal nitrate complexes. Slow thermal decomposition has
been studied by thermogravimetry (TG), differential ther-
mal analysis (DTA) and differential scanning calorimetry
(DSC). Rapid decomposition is studied by ignition delay
measurement. The kinetics of thermolysis has also been
evaluated.

2. Experimental
2.1. Materials

The following AR grade commercially available chemi-
cals were used as received: zinc carbonate (Thomas Baker),
basic cupric carbonate, nickel carbonate (Qualigens), man-
ganese carbonate, 70% nitric acid (BDH), ethanol (Hyman),
1,4-diaminobutane (Merck), silica gel, iodine (s.d. fine chem-
icals) and petroleum ether (Merck).

2.2. Preparation and characterization of the complexes

Complexes were prepared and characterized by following
the same procedure as bis(propylenediamine) metal nitrates
were preparefil6]. Physical, elemental and spectral data are
presented imable 1

2.3. Thermal decomposition studies

Non-isothermal TG in static air atmosphere is done at a
heating rate of 10C/min (sample mass 30 mg) using the
indigenously fabricated TG apparati&/]. Isothermal TG
has also been done using the same above said TG appara-
tus at appropriate temperature of decomposition. Simulta-
neous TG-DTG-DTA thermograms of the complexes were
obtained on Pyris Diamond Star system in flowing nitro-
gen atmosphere (flow rate 100 mL/min) at a heating rate
of 10°C/min. DSC thermograms were obtained on Mettler
Toledo Star system in flowing nitrogen atmosphere (flow rate
50 mL/min) at 10 C/min heating rate. TG curves taken in air,
simultaneous TG—DTG-DTA and DSC curves are shown in
Figs. 1-3 respectively. The ignition delay®() of the com-
plexes were measured using the tube furnace techf2@lie
The sample (mass 20 mg, 100-200 mesh) was taken in an
ignition tube (lendh =5 cm anddiameter = 0.4 cm) clamped
with a bent wire and inserted manually into the tube furnace
(TF). The time interval between the insertion of the ignition
tube into the TF and the moment of visible ignition, noted
with the help of a stop watch, gave the value of ignition delay
in seconds (s). The time taken for the insertion of the ignition
tube was also kept constant throughout the measurements.
The accuracy of temperature measurement of TFEC.

Each run was repeated four times and mBarvalues are
reported inTable 2

Table 1

Physical, elemental and spectral parameters of the complexes
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Fig. 1. TG curves of complexes in air atmosphere.
2.4. Kinetic analysis

Kinetics of thermolysis is evaluated from isothermal TG
taken at appropriate temperature using the model fif28y
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as well as isoconversional method given by Vyazovkin and
Wight [30].

Under isothermal condition the following equation is
found to hold:

A

—Inzi=In {]— Ea
N )

RT;

whereqx is the extent of conversioit, the activation of en-
ergy at a particulag, R the gas constant ang is the abso-
lute temperaturee, is evaluated from the slope of the plot of
—Int,; against 1T;. Thus, the values dE, were evaluated

at variousy;. Isothermal TG curve and the dependencies of
E, on extent of conversion are shownhkiyg. 4. Kinetic anal-
ysis of fast decomposition is evaluated from ignition delay
data,D;. TheD; data were found to fit in following equation
[31,32]

D = A eE*/RT

whereE" is the activation energy for ignition arilis the
absolute temperature. The valuesEbfwere obtained from
the slope of IrD; versus 1T, which is shown irFig. 5.

100
[Cu(dab),|(NO,),.2H,0
80
2
]
= 0 2
S H
40
20
100 200 300 400 500
TEMP(°C)
100
80
[Mn(dab),|(NO,),
TG
801 «— DTG
60
~—DTA
2 s
< "

S 60 0 2
X <
401 20

0
201
100 200 300 400
TEMP(°C)

Fig. 2. Simultaneous TG-DTG-DTA curves of complexes jndimosphere.
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Fig. 3. DSC thermograms of complexes in &tmosphere.
Table 2
Ignition delay D;), activation energy for thermal ignition and correlation coefficiehfdr the complexes
Complex Dj (s) at temperature C) E (kJ/mol) r
350 370 390 410 430
[Zn(dab}](NO3), 1680 1098 188 148 127 131 0.9960
[Cu(dab}](NO3)2-H20 103 82 60 39 27 45 0.9920
[Ni(dab)](NO3),-2H,0 108 92 81 71 62 58 0.9995
[Mn(dab)](NO3)2 65 58 52 48 42 40 0.9968
3. Results and discussion and elemental analysis (Heraeus Carlo Erba 1108 Instru-

ment). The molecular/empirical formula of the complexes
The complexes were characterized by gravimetric meth- was deduced by fitting the observed percentage weights of
ods[33], infrared[34,35] (Perkin-Elmer RXI Spectrometer)  the various elements with that of calculat@difle 7). The IR
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Fig. 4. Graph of IrD; vs. 11T. Fig. 5. Variation of activation energy with extent of conversia (



G. Singh et al. / Journal of Hazardous Materials B122 (2005) 111-117 115

spectral datalable 1) also signalize the proposed molecular nited and gives a sharp weight 10ss51%), and an exother-
formula of the complexes. After the coordination of ligand mic peak in DTA and DSC (peak temperatur@20°C).
to metal ion, the NH stretching frequency decreases from The ignited residue even decomposes slowly exothermically
3350-3400cm! to 3216-3242cm’. IR signal for M-N (242-385). Finally, the manganese oxides are left as decom-
stretching in the range 490-550cfnconfirms the metal to  position product. Observed percentage mass losses are in
ligand bond formation. agreementwith those calculated, which confirms the assumed
From the TG thermogram taken in static &rd. 1) and in composition of the group expelle@3,36,37] Except Zn
flowing N2 atmosphereKig. 2), it is clear that zinc complex ~ complex, where only one exothermic peak is present, all other
undergoes decomposition in two steps. First step (24.8 wt.% complexes show two exothermic peaks in DTA as well as in
loss) is due to the removal of one dab ligand molecule and DSC curves. First exothermic peak is sharp and second one is
is slow process (220-28C). In second step (299-306), spread over awide range of temperature (310=&j0which
the residue ignited at-298°C giving a sharp weight loss  may be due to simultaneous decomposition of the metal ni-
(~54.2%). Corresponding to these two steps, two DTG peakstrate and oxidation of the metal-to-metal oxide. Same type of
were also observed. First step is endothermic as in DTA andobservation is also seen in the thermal decomposition of ni-

DSC endothermic peak is obtained at 262 and “Z79e- trate complexes of transition metals with propylenediamine
spectively. The second of decomposition is fast and exother-[16]. Thus, the plausible mechanistic pathway for the decom-
mic as evidenced by DTA (30%) and DSC peak (31&) position for copper, nickel and manganese complexes may be

(Figs. 2 and R Finally, the left out residue~21%) may be given as:

attributed to ZnO. Thus, the decomposition pathway for this
complex may be proposed as: [M(dab)](NO3)2:xH20 — [M(dab)](NO3z)2 + xH20

[Zn(dab)](NOs), — [Zn(dab)](NGs), + dab [M(dab)](NO3), — [M(dab)](NOs) + dab

[Zn(dab)](NGs)2 — ZnO + gaseous products [M(dab)](NO3), — metal oxides+ gaseous products

Nickel and copper complex decomposes in four steps where M=Cu, Ni and Mnx=1, 2 and 0 for Cu, Ni and Mn
(Figs. 1 and 2 In case of copper complex, the first complexes, respectively.
step (85-121C) is due to the loss of oneJ® molecule Mono (1,2-diaminobutane) metal nitrate species is formed
(~4.6 mass% loss). This step is endothermic as an endothernmas intermediate and separation of stages in case of Zn and
is obtained in DTA and DSC at 12C (Figs. 2 and 3 Now, Mn complexes is due to relatively higher thermal stability
the anhydrous complex, [Cu(dabNO3),, decomposes and  of this monoligand intermediate in comparison to that of

after giving a small weight loss, it ignited at 210 giving other complexes. The formation and stability of such mono-
an exotherm at 218 in DTA and DSC. Just prior to this  ligand intermediate compounds have been seen earlier dur-
exotherm, an endotherm is obtained~at72°C, which is ing thermal studies of bis(ethylenediamine) copper chlo-

due to small weight loss prior to sudden weight loss. The ride/bromide monohydrate$37,5], bis(ethylenediamine)
small weight loss seems to be the partial removal of lig- copper nitrate[25,26] and bis(ethlylenediamine) metal
and molecule. After the ignition of the complex, the left perchlorate complexef29]. Corresponding metal oxides

residue decomposes slowly (307—47) exothermically. Fi- were obtained as final decomposition products at the
nally above 500C, the left residue may be attributed to cop- end of thermal reactions. Such observation has also been
per oxide (~24%). made earlier during thermal studies of amine complexes

Decomposition of nickel complex follows the pattern of of copper(ll) nitrate[29,26] nickel(ll) nitrate [26,38,39]
copper complex. First step (82—150) is due tothe dehydra- and bis(ethylenediamine) metal perchlorate complexes
tion of the complex £8.4 mass% loss) and is endothermic [29].

(DTA; DSC, peak 103C). In second step (200—268), the Change of atmosphere affects decomposition modes of the
dehydrated complex decomposes and after a small weightcomplexes. The rate of decomposition of all these complexes
loss it ignites and a sharp weight loss is observed (66.5%).is fast in air than in N. The comparison of TG taken in
For this ignition, an exotherm is obtained at 268 Before air and in N shows that the steps are not very clear in air
this exotherm, an endotherm (240) is present for the slow  atmosphere. This change in mode of decomposition is due to
decomposition (partial removal of dab molecule) of the de- oxidative nature of air atmosphere.

hydrated complex. After the ignition of the complex, the left The analysis of the kinetics using model-fitting method

residue decomposes slowly (315—42) exothermically. Fi- from isothermal TG results the average activation energy
nally above 500C, the leftresidue may be attributed to nickel 76.2, 17.2, 56.0 and 88.8 kJ/mol up ¢&=0.36, 0.33, 0.56
oxide (~24%). and 0.33 for Zn, Cu, Ni and Mn complexes, respectively.

Manganese complex decomposes in three steps. In theThe higher value oE for Zn and Mn complexes is because
first step (125-216), one ligand leaves off giving a weight in these complexes there is no associated water molecule
loss (~23%) and an endotherm in DTA and DSC curves at and the weight loss occurs due to the removal of dab ligand
~160°C. In second step, the moiety [Mn(dab)](M@ ig- molecule, which needs greater energy due to its chelation to
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